DISCRIMINATING AGAINST INTERFERENCE IN MASSIVE MIMO SYSTEMS: A STATISTICAL APPROACH

FUELING THE DENSE VS. MASSIVE DEBATE

David Gesbert,

EURECOM, gesbert@eurecom.fr Joint work with Haifan Yin

June 10, 2013

David Gesbert, EURECOM, gesbert@eurecom.fr Joint work Discriminating against interference in Massive MIMO system

THE DIMENSIONS OF INTERFERENCE MANAGEMENT

David Gesbert, EURECOM, gesbert@eurecom.fr Joint work Discriminating against interference in Massive MIMO system

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

EXPLOITING AND COORDINATING INTERFERENCE

Transmitter cooperation involve substantial information sharing

- Coordination: transmitters exchange CSIT
 - Coordinated beamforming (CoMP in LTE-A), interference alignement, coordinated scheduling, coordinated power control..
- Exploitation: transmitters exchange CSIT and user data
 - Network (multicell) MIMO, Joint Processing CoMP
- **Rejection**: Simple per-terminal per-cell processing, little info exchange

Some questions:

- Are such methods scalable?
- Do distributed implementation exist?

EXPLOITING INTERFERENCE VIA MULTICELL MIMO

David Gesbert, EURECOM, gesbert@eurecom.fr Joint work Discriminating against interference in Massive MIMO system

THE "DENSE VS. MASSIVE" DEBATE

Dense cooperation (single antenna base station)

Massive MIMO base station (no cooperation)

WHAT CAN SIMPLE DISTRIBUTED BEAMFORMING ACHIEVE?

David Gesbert, EURECOM, gesbert@eurecom.fr Joint work Discriminating against interference in Massive MIMO system

æ

- Let *M* antennas be used at BS 1 and BS 2.
- As $M \to \infty$ (normalized) useful and interference channel vector become quasi orthogonal
- Matched filter maximizes SNR and cancels interference simultaneously [Marzetta 2010]
- Matched filter solution is fully distributed!

But there is a problem...

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

- Non orthogonal pilots -> pilot contamination (PC)
- PC destroys Massive MIMO theoretical benefits

Pilot sequence in *I*-th cell: $\mathbf{s}_{I} = \begin{bmatrix} s_{I1} & s_{I2} & \cdots & s_{I\tau} \end{bmatrix}^{T}$ the $M \times \tau$ signal at the target base station (with noise **N**) is

$$\mathbf{Y} = \sum_{l=1}^{L} \mathbf{h}_l \mathbf{s}_l^T + \mathbf{N}$$
(1)

Least Squares (LS) estimator with full pilot reuse:

$$\widehat{\mathbf{h}}_{1}^{\text{LS}} = \mathbf{h}_{1} + \sum_{l \neq 1}^{L} \mathbf{h}_{l} + \mathbf{N}\mathbf{s}^{*}/\tau$$
(2)

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

A MORE POWERFUL ESTIMATOR (WELL KNOWN!)

$$\rho(\mathbf{h}|\mathbf{y}) = \frac{\exp\left(-\left(\mathbf{h}^{H}\mathbf{R}^{-1}\mathbf{h} + (\mathbf{y} - \mathbf{S}\mathbf{h})^{H}(\mathbf{y} - \mathbf{S}\mathbf{h})/\sigma_{n}^{2}\right)\right)}{AB}$$

where

$$\mathbf{R} \triangleq \operatorname{diag}(\mathbf{R}_1, \cdots, \mathbf{R}_L) \tag{3}$$

$$A \triangleq (\pi \sigma_n^2)^{M_{\tau}}$$
 and
 $B \triangleq \pi^{LM} (\det \mathbf{R})^M$ (4)

Develop covariance-based (Bayesian or MMSE) estimator

$$\widehat{\mathbf{h}}_{1} = \mathbf{R}_{1} \left(\sigma_{n}^{2} \mathbf{I}_{M} + \tau \sum_{l=1}^{L} \mathbf{R}_{l} \right)^{-1} \mathbf{S}^{H} \mathbf{y}$$
(5)

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

 \mathbf{R}_{l} is covariance matrix of *l*-th interference channel.

Theorem [Yin, Gesbert, Filippou, Liu JSAC 2013] Assume multipath angle-of-arrival θ for user j (at target BS 1) has density $p_j(\theta)$ with bounded support, i.e. $p_j(\theta) = 0$ for $\theta \notin [\theta_j^{\min}, \theta_j^{\max}]$ for some fixed $\theta_j^{\min} \leqslant \theta_j^{\max} \in [0, \pi]$. If the L - 1intervals $[\theta_j^{\min}, \theta_i^{\max}]$, i = 2, ..., L are strictly non-overlappipng with $[\theta_1^{\min}, \theta_1^{\max}]$, we have

$$\lim_{M \to \infty} \widehat{\mathbf{h}}_1 = \widehat{\mathbf{h}}_1^{\text{no int}}$$
(6)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

If desired and interference multipath ranges do no overlap, pilot contamination vanish asymptotically.

LEARNING FROM CHANNEL MODELS

Classical specular channel model: $\mathbf{h}_i = \frac{1}{\sqrt{P}} \sum_{p=1}^{P} \mathbf{a}(\theta_{ip}) \alpha_{ip}$ where *P* is number of paths and

$$\mathbf{a}(heta) riangleq \left[egin{array}{c} \mathbf{1} \ e^{-j2\pirac{D}{\lambda}\cos(heta)} \ dots \ e^{-j2\pirac{(M-1)D}{\lambda}\cos(heta)} \end{array}
ight]$$

(7)

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Density function of random variable θ contains useful information, captured by correlation matrix.

$$\mathbf{R}_{\mathbf{i}} = \frac{\delta_i^2}{P} \sum_{p=1}^{P} \mathbb{E}\{\mathbf{a}(\theta_{ip})\mathbf{a}(\theta_{ip})^H\} = \delta_i^2 \mathbb{E}\{\mathbf{a}(\theta_i)\mathbf{a}(\theta_i)^H\}$$

Proof relies on three lemmas:

Lemma 1:

Define $\alpha(\mathbf{x}) \triangleq \begin{bmatrix} 1 & e^{-j\pi x} & \cdots & e^{-j\pi(M-1)x} \end{bmatrix}^T$. Given $b_1, b_2 \in [-1, 1]$ and $b_1 < b_2$, define $\mathcal{B} \triangleq \text{span}\{\alpha(\mathbf{x}) | \mathbf{x} \in [b_1, b_2]\}$, then

• dim{ \mathbb{B} } ~ $(b_2 - b_1)M/2$ when M grows large.

lemma 2 When M grows large,

 $\operatorname{rank}(\mathbf{R}_i) \leqslant d_i M$

where

$$m{d}_i riangleq \left(\cos(heta_i^{min}) - \cos(heta_i^{max})
ight) rac{m{D}}{\lambda}$$

Lemma 1 indicates that for large *M*, there exists a null space null(\mathbf{R}_i) of dimension $(1 - d_i)M$.

lemma 3 When M is large, the null space $null(\mathbf{R}_i)$ includes the following set of unit norm vectors:

$$\mathsf{null}(\mathbf{R}_i) \supset \mathsf{span}\left\{\frac{\mathbf{a}(\Phi)}{\sqrt{M}}, \forall \Phi \notin [\theta_i^{\mathsf{min}}, \theta_i^{\mathsf{max}}]\right\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

LEARNING FROM COVARIANCE MATRICES

David Gesbert, EURECOM, gesbert@eurecom.fr Joint work Discriminating against interference in Massive MIMO system

DECONTAMINATING PILOTS PUT TO PRACTICE

David Gesbert, EURECOM, gesbert@eurecom.fr Joint work Discriminating against interference in Massive MIMO system

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

DECONTAMINATING PILOTS PUT TO PRACTICE

Coordinated Pilot Assignement (CPA):

- Estimate and exchange covariance information between cells (slow varying)
- Apply a coordinated pilot assignement based on covariance information to fulfill (almost) non-overlap condition between signal subspaces

A given pilot sequence is assigned to a user set ${\mathcal U}$ over L cells, minimizing a utility function

$$\mathsf{F}(\mathfrak{U}) \triangleq \sum_{j=1}^{|\mathfrak{U}|} \frac{\mathcal{M}_{j}(\mathfrak{U})}{\operatorname{tr} \{ \mathbf{R}_{jj}(\mathfrak{U}) \}}$$
(8)

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● の Q @

where $\mathcal{M}_{j}(\mathcal{U})$ is the MSE for the desired channel at the *j*-th base station

• Use a greedy approach to avoid exhaustive search

THE SKYSCRAPER EFFECT

David Gesbert, EURECOM, gesbert@eurecom.fr Joint work Discriminating against interference in Massive MIMO system

◆□→ ◆□→ ◆三→ ◆三→ 三三

DECONTAMINATING PILOTS: PERFORMANCE

Angle spread 10 degrees

FIGURE: Estimation MSE vs. antenna number, Gaussian distributed AOAs with $\sigma = 10$ degrees.

David Gesbert, EURECOM, gesbert@eurecom.fr Joint work D

Discriminating against interference in Massive MIMO systems

DECONTAMINATING PILOTS: PERFORMANCE

10 Antennas

FIGURE: Per-cell sum-rate vs. standard deviation of AOA (Gaussian distribution) with M = 10, 7-cell network.

Uplink channel estimation with reused pilots:

$$\mathbf{Y} = \mathbf{h}_1 \mathbf{s}^T + \mathbf{h}_2 \mathbf{s}^T + \mathbf{N}, \tag{9}$$

Define the null space of \mathbf{R}_2 :

$$\mathbf{R}_{2} = \mathbf{U}\Sigma\mathbf{U}^{H} \quad \mathbf{W}_{1} = \left[\mathbf{u}_{m+1}|\mathbf{u}_{m+2}|\dots|\mathbf{u}_{M}\right]^{H}$$
(10)

Assume $h_1 \in \text{null space of } R_2$, then $h_1 = W_1^H \underline{h}_1$ where \underline{h}_1 is the effective channel. The subspace-based channel estimate is

$$\widehat{\mathbf{h}}_1 = \mathbf{W}_1^H \underline{\widehat{\mathbf{h}}}_1 = \mathbf{W}_1^H \mathbf{W}_1 \mathbf{Y} \mathbf{s}^* {(\mathbf{s}^T \mathbf{s}^*)}^{-1}$$
(11)

Note 1: One can also use the fact that $h_1 \in \text{signal subspace of } \mathbf{R}_2$.

Note 2: These properties can be exploited for feedback reduction in FDD context (Adhikary, Caire 2012).

PERFORMANCE OF SUBSPACE-BASED ESTIMATION

Angle spread 30 degrees+random scheduler \Rightarrow very poor performance!

FIGURE: Estimation MSE vs. antenna number, uniformly distributed AOAs with $\theta_{\Delta} = 30$ degrees, 2-cell network.

Is it really necessary to have a good channel estimate? No! Uplink received data:

$$\mathbf{y} = \mathbf{h}_1 \mathbf{s}_1^T + \mathbf{h}_2 \mathbf{s}_2^T + \mathbf{n}, \tag{12}$$

The subspace-based MRC beamformer is $\underline{\widehat{\boldsymbol{h}}}_1^H \boldsymbol{W}_1$

$$\underline{\widehat{\mathbf{h}}}_{1}^{H}\mathbf{W}_{1}\mathbf{y} = \underline{\widehat{\mathbf{h}}}_{1}^{H}\underline{\mathbf{h}}_{1}\mathbf{s}_{1}^{T} + \underbrace{\underline{\widehat{\mathbf{h}}}_{1}^{H}\mathbf{W}_{1}\mathbf{h}_{2}\mathbf{s}_{2}^{T}}_{\approx \mathbf{0}} + \underline{\widehat{\mathbf{h}}}_{1}^{H}\mathbf{W}_{1}\mathbf{n}$$
(13)

Subspace-based massive-MIMO beamformer yields good interference reduction signal enhancement trade-off...

SUBSPACE-BASED MRC BF: PERFORMANCE

Angle spread 30 degrees. Worst channel estimate yields best data rate!

FIGURE: Per-cell rate vs. antenna number, uniformly distributed AOAs with $\theta_{\Delta} = 30$ degrees, 2-cell network.

- Massive MIMO leads to strongly subspace structured covariances
- subspace orthogonality can be exploited for pilot decontamination, beamforming design, feedback reduction
- Orthogonality can be boosted with the help of coordinated pilot assignement and user scheduling
- Open issues: estimation of covariance matrices, random antenna arrays, dealing with skyscraper effects ...