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Wireless operators’ nightmare
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Mobile Broadband's Profitability Gap

e 100x Data traffic increase, due to the introduction of powerful multimedia
capable user devices.

e Operating costs not matched by revenues.



A Clear Case for Denser Spatial Reuse

e If user-destination distance is O(1/+y/n), with transport capacity O(,/n), we
trivially achieve O(1) throughput per user.
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Small Cells: Challenges

Handling mobility: we need (at least) two tiers, small cells to provide
throughput, underneath macro-cells to provide coverage).

Lack of carefully centralized planning = wild inter-tier and intra-tier
interference scenarios, SoN.

Open access versus closed access.... and other “femtocells” stories.

Deployment of a high-capacity wired backbone (by far the most costly
operation in terms of CapEX).



Small Cells: Challenges

Handling mobility: we need (at least) two tiers, small cells to provide
throughput, underneath macro-cells to provide coverage).

Lack of carefully centralized planning = wild inter-tier and intra-tier
interference scenarios, SoN.

Open access versus closed access.... and other “femtocells” stories.

Deployment of a high-capacity wired backbone (by far the most costly
operation in terms of CapEX).



Video-Aware Wireless Networks

e Video is responsible for 66% of the traffic demand increase.

e Internet browsing for another 21%.

e On-demand video streaming and Internet browsing have important common
features:

1. Asynchronous content reuse (traffic generated by a few popular files, which
are accessed in a totally asynchronous way).
2. Highly predictable demand distribution (we can predict what, when and

where will be requested).
3. Delay tolerant, variable quality, ideally suited for best-effort (goodbye Qo0S,

welcome QoE).
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Well-Known Solution in Wired Networks: CDNs

e Caching is implemented in the core network (transparent to the wireless
segment).

Source

Reflectors Edge servers
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Why the Problem is Not (Yet) Solved?

e The wired backhaul to small cells is inexistent, weak or expensive.

e To a lesser extent: interference in the wireless segment.
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Caching at the Wireless Edge

If the CDN nodes are in the core-network, there is not enough bit-rate to
the wireless edge (DSL, Cable ... not fast enough, US fiber-to-the home
penetration .... scarce and costly ... ask Google Fiber!).

Femto Caching: a radical view ... helper nodes everywhere with caches
possibly refreshed by the LTE network at off-peak times.

D2D Caching: an even more radical view ... cache directly in the user
devices, and enable LTE-D2D.

Caching wireless helpers: 10TB nodes x 100 nodes/km? = 1000 TB/km? of
distributed storage capacity.

Near future user devices: 100GB of memory per device x 10000 people/km?
= 1000 TB/km? of distributed storage capacity.
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Research Problems

What to cache, when and where: Predictive networks, using context side
information (e.g., social networks).

Efficient video-streaming in a wireless D2D network: video-quality aware
admission control and scheduling.

Efficient PHY/MAC: how to cope with interference in a dense self-organizing
network (WiFi-offload, forthcoming Small-Cells Standards, LTE-D2D).

Performance Analysis: throughput-outage tradeoff of caching networks.
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Cache Placement: use the LTE base station at off-peak times
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A Cell with Caching Helpers
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The Cache Placement Problem

| User Terminals [ 1 110411 I LA ' H-2 ‘H-1 L]

Wl Helpers

Helpers ‘H of size H + 1, users U/ of size U and a library of files F of size F'.
Bipartite connectivity graph G = (H, U, £).
Helper h = 0 (base station) is connected to all users.

Q = |wp 4] is the matrix of downloading times per information bit over each
link.
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The Problem is Far from Trivial
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e Average downloading delay per information bit for user w:

H ()| 1 Fo[j-1
Du= D Wnw) [H(l — 21 i) | Tr. (L (f)
j=1 f=1 Li=1
Fo[IHu)|-1 ]
+W0,uz H (1 _xf,(i)u) Pr(f)
f=1 i=1

o In order to see this: [H{;ll(l - lef,(i)u)} 2t (7). i the indicator function of the

condition that file f is in the cache of helper (7)., (the j-th lowest delay helper
for user u), and it is not in any of the helpers with lower delay (i), for i =

1,...,5—1.
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e Integer programming problem (combinatorial optimization):

U
maximize > (wo,u — Dy)

u=1

F

subjectto > z;n <M, V b,
F=1
X € {0, 1}/,

e We can show that the problem is NP-hard.

e Fortunately: we can formulate it as the maximization of a sub modular
function subject to a matroid constraint (greedy is good!).

e Convex relaxation: we obtain an LP, with the meaning of intra-session
fountain coding.

e Details in: FemtoCaching: Wireless Video Content Delivery through
Distributed Caching Helpers, ArXiv Preprint, submitted to IEEE Trans. on
Inform. Theory, (2011, revised 2013).
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Numerical Results

Cell of radius 350m.
Helpers connectivity range 70m

BS and helpers operates at 3 bit/s/Hz over 20 MHz of bandwidth:

Spectral Efficiency x Bandwidth

Rate =
Number of connected users

Helpers are placed on a regular grid over the cell area.

F = 1000, M = 100, request distribution is Zipf with parameter 0.56.
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Average User Download rate (in kbps)

Average User Download rate (in kbps)
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Operating the Helpers Cooperatively: Distributed MU-MIMO
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Impact of Caching on Massive MIMO: distributed
implementation

Consider a distributed implementation of massive MIMO, with conjugate

beamforming:
y = H'x +2z, x=Hd

Each Antenna Terminal (AT) ¢ needs to estimate the i-th row of H €
CM*® from the orthogonal uplink pilots, and produce the local data linear

combination X«
ri= ) hijd;
j=1

In order to do so, the data for all K users must be delivered to each of the M
ATs (big stress on the backhaul).

If these data are cached in advance, we can operate the helper nodes
cooperatively, without requiring a K-fold increase of the backhaul capacity.
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Is the Average Downloading Delay Meaningful?

Streaming is characterized by a small pre-buffering delay with respect to the
total file playback time.

Average downloading delay < total video playback is a necessary condition
for streaming without stall.

Statistical fluctuations must be handled by scheduling, and are smoothed out
by the playback buffer.

Several common schemes: MicroSoft Smooth Streaming, Flash Dynamic
Streaming, Apple HTTP Adaptive Bitrate Streaming.
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DASH (Dynamic Adaptive Streaming over HTTP)

Adaptive Streaming over HTTP
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Time-Scale Decomposition

e We perform scheduling at the level of the video chunk (GOP).
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Video-Aware Admission Controls and Scheduling
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Dynamic Stochastic Optimization Problem

e The dynamics of the transmission queues at the helpers is given by:

Qnu(t+ 1) = max{Qpy(t) — nppy(t),0} + kERpy(t), YV (h,u) €&,

e Downlink rate region at each helper node:

fonu(t)
Chu(t)

<1, VheH,
ueN (h)

where
Cho(t) = E

log [ 1+ Prhgnu(t)|anu|’
U2 an P pra (Dl

(This corresponds to FDMA/TDMA orthogonal sharing of the downlink).

28



e Optimization Problem:

maximize Z du(Dy,)

uel
subject to @, < ooV (h,u) € €
Oz(t) - Aw(t) Vt,

e We used the classical method of Liapunov Drift Plus Penalty (DPP).

e The problem decomposes naturally into three decentralized subproblems:
admission control, transmission scheduling, and greedy objective function
maximization.

e Details in: Joint Transmission Scheduling and Congestion Control for
Adaptive Video Streaming in Small-Cell Networks, ArXiv Preprint, submitted
to IEEE Trans. on Commun., (2013).
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Mobility experiment with VBR coded video
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Throughput-Outage Tradeoff of One-Hop Caching Networks

e Dense network, distance 1/+/n, nodes on a grid, protocol model:

s sesl it &




Independent requests with a Zipf distribution P.(f) : f = 1,...,m with
parameter ~,. € (0, 1).

Interference avoidance transmission (independent set scheduling, by the
protocol model).

Random caching: each node cache at random, according to some probability
distribution P.(f), up to M files.

For a given set of scheduled links A, user u gets the rate

T, = Z Cu,vl{fu S G(U)}

v:(u,v)EA

Minimum average per-user throughput:

T min = min E[T},]
ueld
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e Number of users in outage:

No =Y UYE[T,[f,G] = 0}

uel

e Outage probability:

Po = ZIP) u‘fG _O)

uEU

e Throughput-Outage Tradeoff: the set of points (7*(p), p) solution of

maximize T hin

subject to Po < P,

(maximization with respect to the cache placement and transmission
policies).
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Tight Scaling Result

e In the regime m,n — oo, M finite, v,. < 1, and p € (0, 1) we have
M 1
T"(p) = 6 (max {—,—})
m n

e Details in: Wireless Device-to-Device Caching Networks: Basic Principles
and System Performance, ArXiv preprint and submitted to IEEE JSAC
(2013).

Optimal Throughput-Outage Trade-off in Wireless One-Hop Caching
Networks, ArXiv preprint, to appear at IEEE ISIT (2013).

Fundamental Limits of Distributed Caching in D2D Wireless Networks, ArXiv
preprint, submitted to IEEE ITW (2013).
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Competitor Schemes

Conventional broadcasting (TCP connection for each individual streaming
session), yields © ().

Harmonic broadcasting (UDP stream, from which all users grab what they
need), yields © ( 1 )

m log L

Coded multicasting (Maddah-Ali and Niesen, ArXiv 2012-2013) yields also
T, =0 (max {%, i})
m n

Remarkably and surprisingly, coded multicasting from the base station
and random caching with D2D spatial reuse achieve the same order of
throughput. The difference is in the actual rates!!
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Results (indoor outdoor campus scenario)
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Can we combine coded multicasting and D2D reuse?

A tempting idea: can we combine both gains?

We have proposed a combinatorial (non-random) caching at the user (helper)
nodes (ArXiv preprint).

D2D network-coded delivery phase, tight result within a gap from information
theoretic cut-set bound.

L et’s take a closer look at the Maddah-Ali and Niesen scheme.....
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Coded Multicasting (n = m = 3, M = 2)

R(3,2) = ; A2z ® B13 ® C12

wants

wants A
[User 1} [User 2} [User 3}
Ajs Ajs Ajo Ao A3 Aos
Bis Bis Bi1s Bas B13 Bas
Ci2 C13 Cio Cos C13 Cos
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D2D Coded Delivery (n = m = 3, M = 2)

wants A wants B
User 2
By &0 750y
Al,AQ,Ag,AZL, 17A27A57A67
Bi, By, Bs, By, B, B, Bs, Bg,
01,02,03,04, 017027057067
Ag @ By
wants

1 1 1 1 Az, Ay, As, As,
R(3,2) = G + 6 + 6 5 |Users3 B3, By, Bs, Beg,
037047057067
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General Tight Results

e For the base-station coded multicasting scheme, the number of transmitted
bits (normalized to the file size) is:

M 1
R M) = 1 —
mom ) =n (1-20) o

e For the D2D coded delivery scheme, the number of transmitted bits
(normalized to the file size) is:

R(n, m, M) :n(1—M> m

m ) nM

e In the interesting regime nM > m these quantities are almost identical.
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e In both cases, the throughput behaves as:
T, =0 (max {%, l})
m n

e By clustering and replicating the scheme in space we loose the TDMA factor!
Coding and spatial reuse gains do not cumulate, at least in terms of
scaling laws!
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Conclusions

Exploiting the asynchronous content reuse of wireless data killer apps is key
for achieving the required 100x.

Caching at the wireless edge has a great potential, since it relaxes the
constraints on the backhaul (expensive network component).

We have proposed FemtoCaching (helper nodes), and D2D Caching network
(caching at the user devices).

We have developed optimal or near-optimal algorithms for cache placement,
scheduling for adaptive video streaming, and D2D cluster-based interference
avoidance link scheduling.

Theoretical results and simulations show the effectiveness of the approach.

Good news for LTE operators: new use of the macro-cellular base stations at
off-peak times.
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Harmonic Broadcasting (example)

=y
2
52
2
52
52
52
@
52
52

i
Y

A
L

P
Y

«—> <—>
<
N
R
N
&
55
J
R
3
@)
=
"
K
@)
&

Ay el &

44



