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Wireless operators’ nightmare

PROJECT DESCRIPTION

1 Project Overview (4 pages)

An explosive growth in wireless data. It is a widely accepted fact that mobile data traffic will increase by
nearly two orders of magnitude over the next five years or so [1]. About 85% of this growth will come from
mobile Internet browsing and video streaming, due to the ever-growing penetration of multi-media capable
high-end wireless devices such as smartphones, tablets and laptops (see Fig. 1(a)). In the meanwhile,
new spectrum is expected to be released for wireless data services (e.g., a 2010 Presidential Memorandum
on Unleashing the Wireless Broadband Revolution and the National Broadband Plan calls for 500 MHz
of additional bandwidth for wireless/mobile services). Also, “spectral (usage) efficiency” is sought to be
improved by developing new schemes for cellular technology. But is this going to be enough to solve this
“wireless data crunch”?

PROJECT DESCRIPTION

1 Project Overview (4 pages)

An explosive growth in wireless data. It is a widely accepted fact that mobile data traffic will increase
by nearly two orders of magnitude between 2010 and 2015 [1]. About 85% of this growth will come
from mobile Internet browsing and video streaming, due to the ever-growing penetration of multi-media
capable high-end wireless devices such as smartphones, tablets and laptops. Yet, the amount of spectrum
available for such applications remains constant, and gains in spectral efficiency from newer communication
technologies are not following the same trend. In order to solve this “spectrum shortage” and “wireless
data crunch”, a number of solutions are being discussed [REF SOME BUSINESS REPORTS AND CNN,
BLOOMBERG, NEW YORK TIMES, REF PRESIDENTIAL MEMO], including some solutions and their
challenges identified by the EARS NSF workshop [? ]. New spectrum is expected to be released for used
by wireless data services (e.g., a 2010 Presidential Memorandum on Unleashing the Wireless Broadband
Revolution and the National Broadband Plan calls for 500 MHz of additional bandwidth for wireless/mobile
services). At the same time, “spectral (usage) efficiency” is sought to be improved by developing new
schemes for dynamic and agile spectrum sharing, according to the paradigm of “Cognitive Radio” [REF
....].

a) b)

Figure 1: Predicted wireless traffic increase trends [Cisco Visual Networking Index: Global Mobile Data-
Traffic Forecast Update, 2010-2015]. (a) by type of traffic, (b) by type of user devices.

But is this going to be enough? Our thesis is that, no, it will not suffice. Availability of 500 MHz of
new spectrum corresponds roughly to double the amount of spectrum available for wireless data services
today (including 2G, 3G, 4G-LTE, WiFi, Bluetooth, etc.) in the 900MHz, 2GHz, 2.4GHz and 5GHz bands.
Spectrum sharing techniques, as agile and flexible they might be, serve only to “cut the total capacity cake
into thinner slices”, adapted to the local users needs. In brief, if a given technology yields a spectral effi-
ciency of C bit/s/Hz per km2, and the system has W Hz of bandwidth, the total bit/s per km2 is CW , no
matter how agile and flexible the allocation of this resource may be. By Cognitive Radio techniques, one
may be able to reuse dynamically another (say) 500 MHz of bandwidth presently allocated to other services
(e.g., military, public safety, TV channels [SEARCH FOR SOME INFO HERE]). All together, licensed and
dynamic spectrum increase will account for a x3 improvement of the total wireless capacity. Therefore,
these proposed solutions by themselves appear to be very far from satisfying the 100x increase in demand
for wireless data. New paradigmatic solutions are going to be needed if we are to succeed in meetings these
challenges in any significant way.

To achieve a 100x increase in wireless data capacity, we have to fundamentally increase the system
spectral efficiency. This means “squeezing more bits/s per Hz of bandwidth”, , i.e., we have to dramatically
increase C in addition to increasing W . Looking at historic trends (see Fig. 2(a))need reference for this
figure, the largest increases in wireless spectral efficiency has been achieved by spatial reuse of spectrum.
This is not difficult to understand. By reducing the range of a typical wireless link by a factor of 10 (e.g.,
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LTE-Advanced: Heterogeneous Networks 
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[1] Introduction 
Developed by 3GPP, LTE is the leading OFDMA wireless mobile broadband 
technology. LTE offers high spectral efficiency, low latency and high peak data rates. 
LTE leverages the economies of scale of 3G, as well as the ecosystem of 
infrastructure and devices vendors to provide the highest performance in a cost 
effective manner. 

The LTE standard was first published in March of 2009 as part of the 3GPP Release 8 
specifications. Comparing the performance of 3G and its evolution to LTE, LTE does 
not offer anything unique to improve spectral efficiency, i.e. bps/Hz.  LTE improves 
system performance by using wider bandwidths if the spectrum is available.   

3GPP has been working on various aspects to improve LTE performance in the 
framework of LTE Advanced, which include higher order MIMO, carrier aggregation 
(multiple component carriers), and heterogeneous networks (relays, picos and 
femtos). Since improvements in spectral efficiency per link is approaching theoretical 
limits with 3G and LTE, as shown in Figure 1, the next generation of technology is 
about improving spectral efficiency per unit area. In other words, LTE Advanced needs 
to provide a uniform user experience to users anywhere inside a cell by changing the 
topology of traditional networks. A key aspect of LTE Advanced is about this new 
deployment strategy using heterogeneous networks.  

Topology will provide the 
next performance leap for 
wireless networks beyond 
radio link improvements. 

Figure 1 Improvements in spectral efficiency is approaching 
theoretical limits 

(b)

Figure 1: (a) Predicted wireless traffic increase trends by type of traffic[1]. (b) Spectral efficiency improve-
ment rate of current cellular technology follows a law of diminishing return.

Our thesis is that, no, it will not suffice. Availability of 500 MHz of new spectrum corresponds roughly
to double the amount of spectrum available for wireless data services today (including 2G, 3G, 4G-LTE,
WiFi, Bluetooth, etc.) in the 900MHz, 2GHz, 2.4GHz and 5GHz bands. Also, as shown in Fig. 1(b), ca-
pacity improvements of current cellular technology follows a law of diminishing return as we move through
successive generations of wireless cellular systems. Therefore, a brute-force solution will be very far from
satisfying the 100x increase in demand for wireless data. New paradigmatic solutions are going to be needed
if we are to succeed in meetings these challenges in any significant way.

To achieve a 100x increase in wireless data capacity, we have to fundamentally increase the system
spectral efficiency. This means “squeezing more bits/s per Hz of bandwidth”. Looking at historic trends (see
Fig. 2(a))need reference for this figure, the largest increases in wireless spectral efficiency has been achieved
by spatial reuse of spectrum. This is not difficult to understand. By reducing the range of a typical wireless
link by a factor of 10 (e.g., by decreasing the transmit power), then the number of communication links per
km2 that can coexist simultaneously on the same frequency band increases by a factor of (approximately)
100, since the network node density increases quadratically with the node distance. However, such “network
densification” would be completely infeasible by insisting on a conventional cellular architecture, since in
order to maintain the same coverage it would require 100x more base stations, each of which is significant
capital investment, without counting the wired backhaul network to serve all these base stations, the real
estate costs of the land to host them, and the operating costs for powering and maintaining them. In contrast,
the new emerging paradigm of multiple tier Heterogeneous Networks (HetNets) [REF ....] is imposing a
practical way to achieve spectrum spatial reuse, without a significant capital investment.

A multiple tier HetNet is formed by one or more nested tiers of smaller and smaller cells, under a
conventional macro-cellular “umbrella”, that fills in the gaps of the small cell coverage and serves the few
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• 100x Data traffic increase, due to the introduction of powerful multimedia
capable user devices.

• Operating costs not matched by revenues.
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A Clear Case for Denser Spatial Reuse

• If user-destination distance is O(1/
√
n), with transport capacity O(

√
n), we

trivially achieve O(1) throughput per user.

0"
200"
400"
600"
800"
1000"
1200"
1400"
1600"

More"
Spectrum"

Frequency"
Division"

Modula=on"
and"Coding"

Spectrum"re@
use"

25" 5" 5"

1600"

Factor'of'capacity'increase'since'1950'

2



Small Cells: Challenges

• Handling mobility: we need (at least) two tiers, small cells to provide
throughput, underneath macro-cells to provide coverage).

• Lack of carefully centralized planning =⇒ wild inter-tier and intra-tier
interference scenarios, SoN.

• Open access versus closed access.... and other “femtocells” stories.

• Deployment of a high-capacity wired backbone (by far the most costly
operation in terms of CapEX).
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Video-Aware Wireless Networks

• Video is responsible for 66% of the traffic demand increase.

• Internet browsing for another 21%.

• On-demand video streaming and Internet browsing have important common
features:

1. Asynchronous content reuse (traffic generated by a few popular files, which
are accessed in a totally asynchronous way).

2. Highly predictable demand distribution (we can predict what, when and
where will be requested).

3. Delay tolerant, variable quality, ideally suited for best-effort (goodbye QoS,
welcome QoE).
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Video-Aware Wireless Networks

• Video is responsible for 66% of the traffic demand increase.

• Internet browsing for another 21%.

• On-demand video streaming and Internet browsing have important common
features:

1. Asynchronous content reuse (traffic generated by a few popular files, which
are accessed in a totally asynchronous way).

2. Highly predictable demand distribution (we can predict what, when and
where will be requested).

3. Delay tolerant, variable quality, ideally suited for best-effort (goodbye QoS,
welcome QoE).

• VAWN Project:
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Well-Known Solution in Wired Networks: CDNs

• Caching is implemented in the core network (transparent to the wireless
segment).Akamai live streaming infrastructure 
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Reflectors Edge servers 
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Trace format 
[Client IP, Player ID, Stream URL, Session start time, 
Session duration, Mean receiving bandwidth] 
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Why the Problem is Not (Yet) Solved?

• The wired backhaul to small cells is inexistent, weak or expensive.

• To a lesser extent: interference in the wireless segment.

Akamai live streaming infrastructure 
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Reflectors Edge servers 

Source 

Trace format 
[Client IP, Player ID, Stream URL, Session start time, 
Session duration, Mean receiving bandwidth] 

11



Caching at the Wireless Edge

• If the CDN nodes are in the core-network, there is not enough bit-rate to
the wireless edge (DSL, Cable ... not fast enough, US fiber-to-the home
penetration .... scarce and costly ... ask Google Fiber!).

• Femto Caching: a radical view ... helper nodes everywhere with caches
possibly refreshed by the LTE network at off-peak times.

• D2D Caching: an even more radical view ... cache directly in the user
devices, and enable LTE-D2D.

• Caching wireless helpers: 10TB nodes × 100 nodes/km2 = 1000 TB/km2 of
distributed storage capacity.

• Near future user devices: 100GB of memory per device × 10000 people/km2

= 1000 TB/km2 of distributed storage capacity.
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Research Problems

• What to cache, when and where: Predictive networks, using context side
information (e.g., social networks).

• Efficient video-streaming in a wireless D2D network: video-quality aware
admission control and scheduling.

• Efficient PHY/MAC: how to cope with interference in a dense self-organizing
network (WiFi-offload, forthcoming Small-Cells Standards, LTE-D2D).

• Performance Analysis: throughput-outage tradeoff of caching networks.
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Cache Placement: use the LTE base station at off-peak times

LTE Multicast Stream
(Fountain-encoded)
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A Cell with Caching Helpers

3

• Coded Femtocaching: For coded distributed caching problem, we show that the expected delay
minimization is a convex optimization problem and that, not surprisingly the coded problem is the
convex relaxation of the uncoded problem.

• Numerical results: We present numerical results regarding the performance of the coded and the
uncoded caching schemes under idealistic scenarios with typical averaged link rates for links between
helpers and users, and downlink rates for the base station. As it has been noted already, we assume
that popularity of files changes very slowly compared to the streaming rate. However, the connectivity
of the wireless network evolves at a time scale comparable to that of streaming, for nomadic users
moving at walking distance. Hence, adapting the cache content through low rate backhaul links as
the network connectivity changes is not practical. To this end we also present numerical results, for
the case of limited mobility, where the cache optimization is run at a given current realization of
the network graph, and kept constant for a certain time interval, while the users in the network are
allowed to move according to a random walk. By comparing the performance gap between the case
where the caches are optimized at each new network graph realization with the suboptimal practical
case where the caches are kept constant for intervals of fixed duration, we numerically evaluate the
impact of (limited) mobility on the proposed caching system.

II. DISTRIBUTED CACHING PLACEMENT MODEL AND ASSUMPTIONS

We consider a single cell, equipped with a base station (BS), serving a large number of User Terminals
(UTs), with the help of dedicated content distribution nodes (helpers). The helpers are placed in fixed
positions in the cell and are assumed to have (i) large storage capacity, (ii) localized, high-bandwidth
communication capabilities which enable high frequency reuse, and (iii) low-rate backhaul links which
can be wired or wireless; they thus form a distributed caching infrastructure. Figure 1 illustrates the system
layout. The key point is that if there is enough content reuse, i.e., many users are requesting the same
video content, caching can replace backhaul communication. Notice that requests here are completely
asynchronous, i.e., the time difference between requests to the same file from different users is arbitrary
and generally much larger than the duration of the video playback. In contrast, the downloading time
should be comparable to the duration of the video playback. Hence, a user can start watching the video
after some (short) time for buffering, while download goes on. This assumption is consistent with video
on-demand streaming.

Fig. 1. An example of the single-cell layout. UTs are randomly distributed, while helpers can be deterministically placed in the coverage
region.

Here, we formulate the following wireless distributed caching problem: for given popularity distribution,
storage capacity in the helpers and wireless communication model, how should the files be placed in the
helpers such that the average sum downloading delay of all users is minimized? Since users experience
shorter delay when they are served locally from helpers in their neighborhoods, minimizing the average
delay for a given user is equivalent to maximizing the probability of finding the desired content in the
neighboring helpers. The solution is trivial when there are few helpers in the cell, i.e. when each UT can
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The Cache Placement Problem
3

should the files be placed in the helpers such that the average
sum delay of all users is minimized? Since users experience
shorter delay when they locally download from helpers in
their neighborhoods instead of the BS, minimizing the av-
erage delay for a given user is equivalent to maximizing the
probability of finding the desired content in the helpers within
the UT’s reach. The solution is trivial when there are few
helpers in the cell and as a result each UT can connect only
to a single helper. In this case, each helper should cache the
most popular files, in sequence of popularity, until its cache
is full. If the helper deployment is dense enough, UTs will be
able to communicate with several such helpers and each sees a
distributed cache that is the union of the helpers caches. In this
situation, the question on how to best assign files to different
helpers becomes a much more complicated issue, because each
UT sees a different, but correlated, distributed cache. In section
III, we illustrate through examples the complexity of finding
the optimum file placement when some users are connected
to more than one helper. Moreover, we show that the uncoded
distributed caching problem is NP-complete.

We assume that the popularity distribution of the files
changes slowly. Typical examples include popular news, con-
taining short videos, which are updated every 2-3 hours, new
movies, which are posted every week, new music videos,
which are posted (or change popularity) about every month.
Due to time-scale decomposition, the popularity distribution of
the files is effectively fixed; furthermore it can be learned by
the system, and thus be assumed known for our further consid-
erations. Moreover, the cost of refreshing the helpers’ content
can be safely neglected. Once the optimal content placement
is determined, the BS centrally populates the helpers’ caches
using weak backhaul links.

There are H helpers, K user terminals, and a library of
N files, denoted by F . All files are assumed to have the
same size. This assumption is mainly used for notational
convenience, and could be easily lifted by considering a finer
packetization, and breaking longer files into blocks of the same
length. The popularity distribution of the files conditioned on
the event that a user makes a request is denoted by Pn, for
n = 1, . . . , N . The connectivity between users and helpers
can be represented in a bipartite graph; one example is shown
in Figure 2. If there is an edge between helper h and UT k, it
means that UT k can communicate reliably with helper h. In
practice, the connectivity graph is determined by the location
of users and helpers and transmission radius of the helpers.
We assume that the connectivity between UTs and helpers
does not change during the transmission of a video file. This
requires our users to be fairly static compared to the download
time.

When a user requests some file n, it first asks its local
helpers, i.e., helpers in the neighborhood of the user in the
user-helper connectivity graph. We assume that, at the cost
of a small protocol overhead, the BS maintains a list of all
the helpers caches content. A user makes a request, and it is
redirected to a local helper if the request is available there, or
it is handled by the BS directly if it is not available.

Fig. 2. Example of a connectivity bipartite graph indicating how UTs are
connected to helpers.

III. UNCODED DISTRIBUTED CACHING PLACEMENT

In the uncoded case, a file can be either entirely cached
or not cached at all. As mentioned in Sec. I, if each UT can
communicate to only one helper, the optimal caching policy
is simple: each helper should cache the most popular files.
When a user has connection to multiple helpers, however,
the caching policy becomes non-trivial, as shown in the
example of Figure 3. There are two helpers and four UTs.
The dashed circles centered around helpers indicate the helper
transmission radius. Assuming that each helper can cache M
files, users U1 and U2 would prefer helper H1 to cache the M
most popular files since this minimizes their expected delay.
Similarly, user U4 would prefer that helper H2 also caches the
M most popular files. However U3 would prefer H1 to cache
the M most popular files and H2 the second M most popular
(or the opposite). This effectively creates a distributed cache
of size 2M for user U3. As can be seen, in the distributed
caching problem, the individual objectives of different users
may be in conflict.

Fig. 3. Distributed Caching example: two helpers H1, H2 and four users
with conflicting interests.

Assume that the set of available transmitters for user
k is equal to N (k) = {hk

1 , hk
2 , . . . , hk

|N (k)|�1, BS}.
The reciprocal of the average data rates for the link
between user k and its local helper h (including BS
as the “helper” number h = |N (k)|) are denoted by
⌦k = {!k

1 , !k
2 , . . . , !k

|N (k)|�1, !
k
|N (k)|}. As a matter of

fact, the instantaneous rate of these links fluctuates because
of fading and multiple-access scheduling, so that the
instantaneous rate might be zero on some slots. Nevertheless,
assuming that each user is a “drop in the ocean”, i.e., that
the mutual influence of the users on each other is negligible,
we may consider each link as a channel of variable capacity,
and given average rate that depends only on the link itself,

• Helpers H of size H + 1, users U of size U and a library of files F of size F .

• Bipartite connectivity graph G = (H,U , E).

• Helper h = 0 (base station) is connected to all users.

• Ω = [ωh,u] is the matrix of downloading times per information bit over each
link.
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The Problem is Far from Trivial

5

III. UNCODED DISTRIBUTED CACHING PLACEMENT

In the uncoded case, a file can be either entirely cached or not cached at all. As mentioned in Section
II, if each UT can communicate to only one helper, the optimal caching policy is simple: each helper
should cache the most popular files. When a user has connection to multiple helpers, however, the caching
policy becomes non-trivial, as shown in the example of Figure 3. There are two helpers and four UTs.
The dashed circles centered around helpers indicate the helper transmission radius. Assuming that each
helper can cache M files, users u1 and u2 would prefer helper h1 to cache the M most popular files since
this minimizes their average delay. Similarly, user u4 would prefer that helper h2 also caches the M most
popular files. However u3 would prefer h1 to cache the M most popular files and h2 the second M most
popular (or the opposite). This effectively creates a distributed cache of size 2M for user u3. We observe
that in the distributed caching problem the individual objectives of different users may be in conflict.

Fig. 3. Distributed Caching example: two helpers and four users with conflicting interests.

An uncoded cache placement is represented by a bipartite graph eG = (F ,H, eE) such that an edge
(f, h) 2 eE indicates that a copy of file f is contained in the cache of helper h. We let X denote the
F ⇥ H adjacency matrix of eG, such that xf,h = 1 if (f, h) 2 eE and 0 otherwise. By the cache size
constraint, we have that the column weight of X is at most M .

Consider a user u and its helper neighborhood H(u). We sort the link delays !h,u in increasing order
such that (j)u denotes the helper index with the j-th smallest delay to user u. By assumption, we have
(|H(u)|)u = 0 (the BS has the highest delay among all h 2 H(u) and therefore it is sorted in |H(u)|-th
position by the helper sorting function (·)u) and for all j > |H(u)| we have !(j)u,u = !1. 2 With this
notation, the average delay per information bit for user u can be written as: 3

D̄u =

|H(u)|�1X
j=1

!(j)u,u

FX
f=1

"
j�1Y
i=1

(1� xf,(i)u)

#
xf,(j)uPf + !0,u

FX
f=1

24|H(u)|�1Y
i=1

(1� xf,(i)u)

35Pf . (1)

In order to see this, notice that
hQj�1

i=1 (1� xf,(i)u)
i
xf,(j)u is the indicator function (defined over the set of

feasible placement matrices X) of the condition that file f is in the cache of the helper (j)u (the j-th lowest
delay helper for user u), and it is not in any of the helpers with lower delay (i)u, for i = 1, . . . , j � 1.
Also,

hQ|H(u)|�1
i=1 (1� xf,(i)u)

i
is the indicator function of the condition that file f is not found in the

neighborhood H(u)\{0} of user u.
The minimization of the sum (over the users) average per-bit downloading delay can be expressed as

2By construction, the links ((j)u, u) with j > |H(u)| do not exist in E .
3We use the convention that the result of

Qb
i=a is 1 when b < a, and that the result of

Pb
i=a is zero when b < a.
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• Average downloading delay per information bit for user u:

D̄u =
|H(u)|−1∑

j=1

ω(j)u,u

F∑
f=1

[
j−1∏
i=1

(1− xf,(i)u)

]
xf,(j)uPr(f)

+ ω0,u

F∑
f=1

|H(u)|−1∏
i=1

(1− xf,(i)u)

Pr(f).

• In order to see this:
[∏j−1

i=1 (1− xf,(i)u)
]
xf,(j)u is the indicator function of the

condition that file f is in the cache of helper (j)u (the j-th lowest delay helper
for user u), and it is not in any of the helpers with lower delay (i)u, for i =
1, . . . , j − 1.
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• Integer programming problem (combinatorial optimization):

maximize
U∑

u=1

(
ω0,u − D̄u

)
subject to

F∑
f=1

xf,h ≤M, ∀ h,

X ∈ {0, 1}F×H.

• We can show that the problem is NP-hard.

• Fortunately: we can formulate it as the maximization of a sub modular
function subject to a matroid constraint (greedy is good!).

• Convex relaxation: we obtain an LP, with the meaning of intra-session
fountain coding.

• Details in: FemtoCaching: Wireless Video Content Delivery through
Distributed Caching Helpers, ArXiv Preprint, submitted to IEEE Trans. on
Inform. Theory, (2011, revised 2013).
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Numerical Results

• Cell of radius 350m.

• Helpers connectivity range 70m

• BS and helpers operates at 3 bit/s/Hz over 20 MHz of bandwidth:

Rate =
Spectral Efficiency× Bandwidth

Number of connected users

• Helpers are placed on a regular grid over the cell area.

• F = 1000, M = 100, request distribution is Zipf with parameter 0.56.
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Greedy Uncoded
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Fig. 5. Average user download rate versus number of helper for 300 users.

evaluated on the connectivity graph induced by the final user positions and the performance is compared.
We observe that there is only a very small difference in performance between the two placements, and the
difference grows when the number of helpers increase. Therefore, in a low mobility scenario, if there is
no mass migration of users over a time period and if the user density over the cell remains approximately
the same over the time period, mobility of users would not alter the performance of these placement
schemes. This is because the actual identity of the user is irrelevant. If a user moves very far relative to
his initial position, qualitatively speaking, there would be another user who would take his initial place.

The simulations presented in this paper, ignore link rate change due to scheduling at the base station.
When considering scheduling dynamics at the base station, with caching at the helpers, a big part of
the traffic would be offloaded to the helpers due to the placement schemes and hence frequency-time
resources available for scheduling are freed to accommodate more demands or support higher downlink
rates.This natural base station ‘offloading” advantage of the system with helpers is ignored here and would
provide even additional gains to the femtocaching system with respect to the baseline system. For a more
detailed experimental evaluation, using actual Youtube request traces from a campus [37], and taking the
actual LTE scheduling into account in the downlink, we refer the reader to the papers [38] [39] where
the uncoded and coded placement schemes have separately been evaluated.

VI. CONCLUSION

In this paper, we introduced a new method for increasing the throughput of wireless video delivery
networks. The key idea is the use of a distributed cache, i.e., helper stations that store the most popular
video files, and transmit them, upon request, via short-range wireless links to the user terminals. The
caches are low-cost because storage capacity has become exceptionally cheap, while the loading of the
files to the caches can occur through a low-rate (and thus cheap and robust) backhaul links during low
demand times. We then formulated and solved the problem of which files should be assigned to which
helpers assuming that the file popularity distribution and the network connectivity graph and link rates are
known. We studied two types of placement problems, namely coded and uncoded placement, depending on
how the files are stored. We showed intractability and develop approximation algorithms for the uncoded
scheme. We showed that the coded placement is a convex optimization problem. Further, we provided
numerical results, and numerically addressed the effect of limited mobility on the system performance.
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Fig. 6. Average user download rate versus number of users for 32 helpers.
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Fig. 7. Performance comparison between mobility adaptive and mobility agnostic uncoded placement when users execute independent
random walk for 800 steps each of size 2 meters.

For future work, we would like to point out that the uncoded problem is a new coverage problem adding
to traditional ones like set cover and maximum coverage. Actually, it would be much more interesting
to find a better approximation guarantee for the general uncoded problem with improved bounds on the
running time.
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Operating the Helpers Cooperatively: Distributed MU-MIMO

Switch (Gb Ethernet) Server
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Impact of Caching on Massive MIMO: distributed
implementation

• Consider a distributed implementation of massive MIMO, with conjugate
beamforming:

y = HHx + z, x = Hd

• Each Antenna Terminal (AT) i needs to estimate the i-th row of H ∈
CM×K from the orthogonal uplink pilots, and produce the local data linear
combination

xi =
K∑

j=1

hi,jdj

• In order to do so, the data for all K users must be delivered to each of the M
ATs (big stress on the backhaul).

• If these data are cached in advance, we can operate the helper nodes
cooperatively, without requiring a K-fold increase of the backhaul capacity.
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Is the Average Downloading Delay Meaningful?

• Streaming is characterized by a small pre-buffering delay with respect to the
total file playback time.

• Average downloading delay ≤ total video playback is a necessary condition
for streaming without stall.

• Statistical fluctuations must be handled by scheduling, and are smoothed out
by the playback buffer.

• Several common schemes: MicroSoft Smooth Streaming, Flash Dynamic
Streaming, Apple HTTP Adaptive Bitrate Streaming.
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DASH (Dynamic Adaptive Streaming over HTTP)
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Time-Scale Decomposition

• We perform scheduling at the level of the video chunk (GOP).

User time scale

Video time scale

Radio time scale

day
video

GOPs

PHY packets

x1000

x1000

26



Video-Aware Admission Controls and Scheduling

admission control

rate scheduling

playback

playback
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Dynamic Stochastic Optimization Problem

• The dynamics of the transmission queues at the helpers is given by:

Qhu(t+ 1) = max{Qhu(t)− nµhu(t), 0}+ kRhu(t), ∀ (h, u) ∈ E ,

• Downlink rate region at each helper node:

∑
u∈N (h)

µhu(t)
Chu(t)

≤ 1, ∀ h ∈ H,

where

Chu(t) = E
[

log

(
1 +

Phghu(t)|ahu|2
1 +

∑
h
′ 6=hPh

′gh
′
u(t)|ah

′
u|2
)]

.

(This corresponds to FDMA/TDMA orthogonal sharing of the downlink).
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• Optimization Problem:

maximize
∑
u∈U

φu(Du)

subject to Qhu <∞ ∀ (h, u) ∈ E
α(t) ∈ Aω(t) ∀ t,

• We used the classical method of Liapunov Drift Plus Penalty (DPP).

• The problem decomposes naturally into three decentralized subproblems:
admission control, transmission scheduling, and greedy objective function
maximization.

• Details in: Joint Transmission Scheduling and Congestion Control for
Adaptive Video Streaming in Small-Cell Networks, ArXiv Preprint, submitted
to IEEE Trans. on Commun., (2013).
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Mobility experiment with VBR coded video
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Throughput-Outage Tradeoff of One-Hop Caching Networks

• Dense network, distance 1/
√
n, nodes on a grid, protocol model:

s
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• Independent requests with a Zipf distribution Pr(f) : f = 1, . . . ,m with
parameter γr ∈ (0, 1).

• Interference avoidance transmission (independent set scheduling, by the
protocol model).

• Random caching: each node cache at random, according to some probability
distribution Pc(f), up to M files.

• For a given set of scheduled links A, user u gets the rate

Tu =
∑

v:(u,v)∈A

cu,v1{fu ∈ G(v)}

• Minimum average per-user throughput:

Tmin = min
u∈U

E[Tu]
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• Number of users in outage:

No =
∑
u∈U

1{E[Tu|f,G] = 0}

• Outage probability:

po =
1
n

E[No] =
1
n

∑
u∈U

P (E[Tu|f,G] = 0) .

• Throughput-Outage Tradeoff: the set of points (T ∗(p), p) solution of

maximize Tmin

subject to po ≤ p,

(maximization with respect to the cache placement and transmission
policies).
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Tight Scaling Result

• In the regime m,n→∞, M finite, γr < 1, and p ∈ (0, 1) we have

T ∗(p) = Θ
(

max
{
M

m
,
1
n

})

• Details in: Wireless Device-to-Device Caching Networks: Basic Principles
and System Performance, ArXiv preprint and submitted to IEEE JSAC
(2013).

Optimal Throughput-Outage Trade-off in Wireless One-Hop Caching
Networks, ArXiv preprint, to appear at IEEE ISIT (2013).

Fundamental Limits of Distributed Caching in D2D Wireless Networks, ArXiv
preprint, submitted to IEEE ITW (2013).
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Competitor Schemes

• Conventional broadcasting (TCP connection for each individual streaming
session), yields Θ

(
1
n

)
.

• Harmonic broadcasting (UDP stream, from which all users grab what they
need), yields Θ

(
1

m log L

)
.

• Coded multicasting (Maddah-Ali and Niesen, ArXiv 2012-2013) yields also

Tu = Θ
(

max
{
M

m
,
1
n

})

• Remarkably and surprisingly, coded multicasting from the base station
and random caching with D2D spatial reuse achieve the same order of
throughput. The difference is in the actual rates!!
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Results (indoor outdoor campus scenario)
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Convetional Broadcasting
Harmonic Broadcasting with m’ = 300
Harmonic Broadcasting with m’ = 280
Harmonic Broadcasting with m’ = 250
Coded Multicasting
Proposed D2D scheme

Simulation results for the throughput-outage trade-off for different schemes
under the realistic indoor/outdoor propagation environment, n = 10000,
m = 300, M = 20 and γr = 0.4.
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Can we combine coded multicasting and D2D reuse?

• A tempting idea: can we combine both gains?

• We have proposed a combinatorial (non-random) caching at the user (helper)
nodes (ArXiv preprint).

• D2D network-coded delivery phase, tight result within a gap from information
theoretic cut-set bound.

• Let’s take a closer look at the Maddah-Ali and Niesen scheme.....
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Coded Multicasting (n = m = 3, M = 2)

User 1 User 2 User 3

wants A wants wantsB C

A12 A13
B12 B13

C12 C13

A12 A23

B12 B23

C12 C23

A13 A23

B13 B23

C13 C23

A23 �B13 � C12R(3, 2) =
1
3
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D2D Coded Delivery (n = m = 3, M = 2)

User 1

A1, A2, A3, A4,
B1, B2, B3, B4,
C1, C2, C3, C4, C1, C2, C5, C6,

B1, B2, B5, B6,
A1, A2, A5, A6,

A3, A4, A5, A6,
B3, B4, B5, B6,
C3, C4, C5, C6,

wants A wants

wants

B

C

User 2

User 3

�B3 � C1 A5 � C2

A6 �B4

R(3, 2) =
1
6

+
1
6

+
1
6

=
1
2
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General Tight Results

• For the base-station coded multicasting scheme, the number of transmitted
bits (normalized to the file size) is:

R(n,m,M) = n

(
1−M

m

)
1

1 + nM
m

• For the D2D coded delivery scheme, the number of transmitted bits
(normalized to the file size) is:

R(n,m,M) = n

(
1−M

m

)
m

nM

• In the interesting regime nM � m these quantities are almost identical.
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• In both cases, the throughput behaves as:

Tu = Θ
(

max
{
M

m
,
1
n

})

• By clustering and replicating the scheme in space we loose the TDMA factor!
Coding and spatial reuse gains do not cumulate, at least in terms of
scaling laws!
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Conclusions

• Exploiting the asynchronous content reuse of wireless data killer apps is key
for achieving the required 100x.

• Caching at the wireless edge has a great potential, since it relaxes the
constraints on the backhaul (expensive network component).

• We have proposed FemtoCaching (helper nodes), and D2D Caching network
(caching at the user devices).

• We have developed optimal or near-optimal algorithms for cache placement,
scheduling for adaptive video streaming, and D2D cluster-based interference
avoidance link scheduling.

• Theoretical results and simulations show the effectiveness of the approach.

• Good news for LTE operators: new use of the macro-cellular base stations at
off-peak times.
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Thank You
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Harmonic Broadcasting (example)
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