

MMWAVES FOR FUTURE RADIO ACCESS OPPORTUNITIES AND CHALLENGES

David Astély Principal Researcher, Ericsson Research

IEEE International Conference on Communications Budapest, Hungary, June 10, 2013

FUTURE RADIO ACCESS

KEY CHALLENGES

Massive growth in **Traffic Volume** Expanding mobile broadband and communicating machines "1000x and beyond"

Wide range of Requirements & Characteristics

- Data rates
- Latency
- Reliability
- Device energy consumption
- Device cost
- •

Affordable and sustainable

FUTURE RADIO ACCESS NETWORKED SOCIETY VISION

Multiple Integrated Wireless/Access Solutions enabling the long-term Networked Society

More than peak data rates and system capacity

DATA RATES AND CAPACITY SOME TECHNOLOGY COMPONENTS

- > Combine densification, antennas and spectrum for high data rates
 - Very high data rates pose basic link budget challenge,
 - Densification needs backhaul

"MMWAVE" FREQUENCIES MORE SPECTRUM

> Potential for vast amount of spectrum

- Large bandwidths for high capacity and efficient provisioning of (very) high data rates
 - > but not the only solution...
- > But, spectrum is not un-used today
 - Wireless backhaul, an enabler for densification
 - ... as well as satellite, military, short range communication, radar, sensing,...

MMWAVE PROPAGATION

- > Path loss between isotropic antennas ~20log10(f)
 - Directivity for fixed area antenna ~20log10(f)
 - Fixed antenna area at one side → frequency independency (ideally, perfect pointing)
 - Fixed antenna area both sides → gain from increasing frequency (ideally, perfect pointing)

Example with parabolic antennas

- Atmospheric absorption*
- > Rain attenuation*

Important for LOS wireless backhaul planning

MMWAVE PROPAGATION

- Diffraction loss
 - A → B: possibly lower multi-screen diffraction losses
 - B → C: ~10log10(f) additional loss (knife-edge diffraction based model)
- > Reflection loss
 - Material dependent, frequency dependency?
- > Outdoor-to-indoor penetration loss (C → D)
 - Increasing with frequency for many materials ⇒ loss likely increasing with frequency?

... there should be NLOS scenarios with "decent" additional loss...

NLOS BACKHAUL TRIAL

DIFFRACTION

- > Comparison with similar antenna sizes at both ends
 - -5.8GHz: 1x40MHz TDD, 19dBm, 17dBi antennas
 - 28GHz: 2x56MHz FDD, 19dBm, 38dBi antennas (Ericsson MINILINK PT2010)

Agreements for pathloss, antenna directivity and diffraction models,

NLOS BACKHAUL TRIAL REFLECTION

> Reflections may be used

- -5-25dB additional loss as compared to LOS expected in trial area
- Multiple reflections may also be used

NLOS BACKHAUL TRIAL FOLIAGE PENETRATION

- > Large signal power variations observed for dense foliage
- > Communication through penetration through sparse foliage possible

NLOS BACKHAUL TRIAL SUMMARY

- Line of sight
- Single reflection
- Double reflection (not always possible)
- Diffraction

Distance	LOS	Single Reflection	Diffraction	Double Reflection
0-100m	400Mbps	400Mbps	400Mbps	280Mbps
100-250m	400Mbps	400Mbps	400Mbps	185Mbps
250-500m	400Mbps	400Mbps	280Mbps	185Mbps

> Rule-of-thumbs identified and verified

Directive high gain antennas key enabler for NLOS at 28GHz wireless backhaul

MMW FOR RADIO ACCESS BEYOND WIRELESS BACKHAUL?

3

Highly directive antennas to enhance data rate coverage
 Antenna size need not prevent similar coverage as lower frequencies

- > Impact of user?
 - Measured 40dB body loss at 60GHz, hand/head may shadow antennas, EIRP limitations

- > Impact of mobility?
 - Larger channel variations due to larger diffraction loss, higher Doppler, more speculars?

- > Impact of adaptive beam steering?
 - Degrees of freedom (analogue vs digital), higher Doppler, antenna design

Access is different from backhaul, need adaptive directivity possibly also multiple antenna arrays in terminal and macro diversity

MMW FOR RADIO ACCESS DEPLOYMENTS

- Indoor coverage from outdoor base stations?
- > Link budget will depend on design choices such as
 - Antenna design, beam steering implementation, Rx vs Tx,..
 - RF parameters (power, noise figure, filters for co-ex, ...)
 - Radio propagation
 - Data rate
 - ...
 - Challenging to exceed low frequency coverage in practice?

Study indoor and outdoor (ultra) dense deployments for high data rates

- Heterogeneous deployment with lower frequency coverage layer?

CONCLUDING REMARKS

- > mmWaves can be used for NLOS wireless backhaul
 - With stationary fixed-area directive high gain antennas, higher frequency may outperform lower
- > Explore mmWaves for mobile radio access
 - To what extent can directivity be used in practice with mobile (handheld) devices to support deployments beyond (ultra) dense?
- > Both use cases appear relevant options for future radio access

CONCLUDING REMARKS SOME OPPORTUNITIES AND CHALLENGES

- > Potentially vast amount of spectrum for high capacity
- > Potentially large bandwidths for very high data rates
- Size does not prevent directive high gain antennas
- > Better understanding of propagation including outdoor-to-indoor penetration
- > (Terminal) antenna design and antenna steering for mobile terminals
- > Efficient implementation based on relevant requirements and tradeoffs
- > System design...
- > Deployment/use case....

ERICSSON