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Learning to Beamform

Introduction

Transmit Beamforming: [Farrokhi et al. 1998 (multiuser)],

[Bengtsson-Ottersten 2001], [Sidiropoulos et al. 2006 (multicast)]

1 Exploits CSI at base station (BS) to provide QoS, enhance throughput
in multi-antenna wireless systems

2 Exact CSIT cannot be obtained in practice

3 Acquiring accurate CSIT is a burden, esp. for FDD, high mobility

4 Alternative: Robust beamformer design

Optimize robust performance metric w.r.t. channel uncertainty
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Learning to Beamform

Robust Design: Prior Art

Worst-case design: [Karipidis et al. 2008], [Zheng et al. 2008], [Tajer et al.

2011], [Song et al. 2012], [Huang et al. 2013], [Ma et al. 2017]

Downlink channels: bounded perturbations of a set of nominal channel
vectors

Metric: worst-case QoS w.r.t. all channel perturbations

Can result in a very conservative design

Outage-based design: [Xie et al. 2005], [Vorobyov et al. 2008], [Ntranos et
al. 2009], [Wang et al. 2014], [He-Wu 2015], [Sohrabi-Davidson 2016]

Downlink channels: random vectors from an underlying distribution

Metric: QoS exceeds pre-specified threshold with high probability

Vary level of conservativeness by changing threshold

Approach adopted here
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Learning to Beamform

Outage-based Design

Prior approaches:
Postulate/fit a model for the underlying probability distribution

Use knowledge of distribution to minimize outage probability

NP-hard → Approximation algorithms, still computationally demanding

Our approach:
Knowledge of underlying distribution not required

Stochastic approximation - simple, online algorithms for directly
minimizing outage

Performs remarkably well, hard to analyze
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Learning to Beamform

Problem Statement

Point-to-point MISO link:
BS equipped with N transmit antennas
Received signal at user:

y = hHws+ n

QoS: (normalized) receive SNR = |wHh|2

Assumption: Temporal variations of h ∈ CN are realizations of an
underlying distribution

Example: Gaussian Mixture Model (GMM) [Ntranos et al. 2009]
Interpretation: Each Gaussian kernel corresponds to a different channel
state
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Learning to Beamform

Problem Formulation

Minimize outage probability subject to power constraints:

min
w∈W

{
F (w) := Pr

(
|wHh|2 < γ

)}

W ⊂ CN : set of power constraints

“simple” (easy to project onto), convex, compact
Example: per-antenna power constraints, sum-power constraints

γ ∈ R+: Outage threshold
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Learning to Beamform

Problem Formulation

Equally applicable to single-group multicast beamforming [Ntranos et al.

2009]
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Learning to Beamform

Challenges

Non-convex problem, NP–hard [Ntranos et al. 2009]

Approximate minimization via simple algorithms?

Only for specific cases [Ntranos et al. 2009]

Extension to general case requires computing cumbersome integrals

Who tells you the channel distribution?

Not available in practice!

Use data-driven approach instead?
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Learning to Beamform

Key Idea

Reformulate as stochastic optimization problem

min
w∈W

{
Pr

(
|wHh|2 < γ

)
= Eh[I{|wHh|2<γ}] ≈

1

T

T∑
t=1

I{|wHht|2<γ}

}

I{f(x)<a} =

{
1, if f(x) < a

0, otherwise
: Indicator function

Interpretation: minimize total # outages over (“recent”) channel
“history” - very reasonable

Use stochastic approximation [Robbins-Monro 1951], [Shapiro et al. 2009]

Given most recent channel realization ht

Update w to minimize instantaneous cost function I{|wHht|2<γ}
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Learning to Beamform

Stochastic Approximation

Benefits:

Knowledge of channel distribution not required!

Online implementation

Low memory and computational footprint

Naturally robust to intermittent/stale feedback from the user

All channel vectors are statistically equivalent

Feedback requirements are considerably relaxed

Can also exploit feedback from “peer” users

“Collaborative Filtering/Beamforming”

Well suited for FDD systems

Can it work well for our non-convex, NP-hard problem?
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Learning to Beamform

Stochastic Approximation

Major roadblock:
Indicator function is non-convex, discontinuous

Proposed solution:
Approximate indicator function via smooth surrogates
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Learning to Beamform

Construction of smooth surrogates

Transformation to real domain:
Define w̃ := [<[w]T ,=[w]T ]T ∈ R2N , h̃ := [<[h]T ,=[h]T ]T ∈ R2N

Define

H̃ :=

[
<[h] =[h]
=[h] −<[h]

]
∈ R2N×2

In terms of real variables

Indicator function f(w̃; h̃) := I{‖H̃T w̃‖22<γ}

Constraint set W̃ ⊂ R2N
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Learning to Beamform

Construction of smooth surrogates

Sigmoidal Approximation:

u(w̃; h̃) :=
1

1 + exp (‖H̃T w̃‖22 − γ)

Continuously differentiable

Point-wise Max (PWM) Approximation:

v(w̃; h̃) := max

{
0, 1− ‖H̃

T w̃‖22
γ

}
= max

0≤y≤1

{
y

(
1− ‖H̃

T w̃‖22
γ

)}

Non-differentiable!
Solution: Apply Nesterov’s smoothing trick [Nesterov 2005]
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Learning to Beamform

Construction of smooth surrogates

Smoothed Point-wise Max Approximation:
Define smoothing parameter µ ∈ R+

Define g(w̃; h̃) := 1− ‖H̃
T w̃‖22
γ

Consider the modified PWM function

v(µ)(w̃; h̃) = max
0≤y≤1

{
yg(w̃; h̃)− µ

2
y2
}

=


0, g(w̃; h̃) < 0

1

2µ

(
g(w̃; h̃)

)2
, 0 ≤ g(w̃; h̃) ≤ µ

g(w̃; h̃)− µ

2
, g(w̃; h̃) > µ

Continuously differentiable!
Furthermore,

v(µ)(w̃; h̃) ≤ v(w̃; h̃) ≤ v(µ)(w̃; h̃) +
µ

2
,∀ (w̃; h̃) [Nesterov 2005]
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Learning to Beamform

Putting it all together

Modified Problem(s):

min
w̃∈W̃

{
U(w̃) := Eh̃[u(w̃; h̃)]

}
[Sigmoidal Approx.]

min
w̃∈W̃

{
V (µ)(w̃) := Eh̃[v(µ)(w̃; h̃)]

}
[Smoothed PWM Approx.]

Represent both via the problem

min
x∈X

Eξ[f(x; ξ)]

X ⊂ Rd : convex, compact and simple
ξ : random vector drawn from unknown probability distribution with
support set Ξ ⊂ Rd
f(.; ξ) : non-convex, continuously differentiable
Minimize by sequentially processing stream of realizations {ξt}∞t=0
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Learning to Beamform

Online Algorithms

Online Gradient Descent (OGD)
Given realization ξt, define ft(x) := f(x; ξt)
Update:

x(t+1) = ΠX (x(t) − αt∇ft(x(t))),∀ t ∈ N
Online Variance Reduced Gradient (OVRG) [Frostig et al. 2015]

Streaming variant of SVRG [Johnson-Zhang 2013]

Proceeds in stages
At each stage s ∈ [S], define “centering variable” ys from last stage
“Anchor” OGD iterates to gradient of ys
Eξ[∇f(ys; ξ)] is unavailable; form surrogate via mini-batching

ĝs :=
1

ks

∑
i∈[ks]

∇fi(ys)

Update:

x(t+1)
s = ΠX (x(t)

s − α(t)
s (∇ft(x(t)

s )−∇ft(ys) + ĝs)),∀ t ∈ [T ]

Set ys+1 = x
(T+1)
s
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Learning to Beamform

Convergence?

According to theory:

OGD:

(a.s.)convergence to stationary point with diminishing step-size rule
[Razaviyayn et al. 2016]

Requires f(; ξ) to have L Lipschitz continuous gradients

OVRG:

Only established for strongly convex with constant step-sizes f(; ξ)
[Frostig et al. 2015]

Extension to non-convex f(; ξ) currently an open problem

To go by the book (or not)?

OGD: hard to estimate L; estimates too conservative to work well in
practice
OVRG: non-trivial to establish convergence
Use empirically chosen step-sizes; work well in simulations

Nikos Sidiropoulos (University of Virginia) ML for Tx BMF & PC 17 / 49



Learning to Beamform

Baseline for comparison

Alternative approach:

min
w∈W

Pr[|wHh|2 < γ]⇐⇒ max
w∈W

Pr[|wHh|2 ≥ γ]

Ideally: Maximize lower bound of objective function
NP–hard to compute [Ntranos et al. 2009]
Construct lower bound using moment information [He-Wu 2015]

Entails solving non-trivial, non-convex problem
Not suitable for online approximation

Instead: Use Markov’s inequality to maximize upper bound [Ntranos et
al. 2009]

Pr[|wHh|2 ≥ γ] ≤ γ−1wHRw,∀ w ∈ W
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Learning to Beamform

Baseline for comparison

Online Markov Approximation

max
w∈W

wHRw

Online solution:
Sum-power constraints: Oja’s Algorithm [Oja 1982]

(a.s.)convergence to optimal solution

Per-antenna constraints: Stochastic SUM [Razaviyayn et al. 2016]

(a.s.)convergence to stationary point
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Learning to Beamform

Simulations

Setup:
Algorithms: Sigmoid OGD & OVRG, PWM OGD & OVRG, Online
Markov Approximation (OM-App)
Step-sizes: Diminishing rule for OGD, constant for OVRG
Iteration Number: fix maximum gradient budget for all methods
Smoothing parameter for PWM µ = 10−3

For OVRG

Length of each stage: T = 1000
Mini-batch sizes:

ks =


80, s = 1

2ks−1, ks < 640

640, otherwise

Constraints: Per-antenna (-6dbW per antenna)
Channels: GMM with 4 kernels

Equal mixture probabilities
Mean of each kernel modeled using different LOS component
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Learning to Beamform

Illustrative Example
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Figure: N = 100, γ = 4, Ks = 200
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Learning to Beamform

Detailed Results
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Learning to Beamform

Intermezzo - take home points

Learning to beamform for minimum outage

No prior knowledge of distribution required at BS

Reformulate as stochastic optimization problem

Construct smooth surrogate of indicator function

Use simple stochastic approximation based algorithms based on user
feedback

Feedback can be intermittent/delayed/stale/from peer users

Works remarkably well in practice (problem is NP-hard even for
known channel distribution!)

Future work: Extension to general multi-user MIMO, better
theoretical understanding of WHY it works that well
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Learning to Beamform

Be bold!
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Learning to Beamform

Part II: Resource Management for Wireless Networks

Wireless Resource Management

Tx power allocation to optimize throughput.

h11 h22 h33

h13

T1 T2 T3

R1 R2 R3

p1 p2 p3
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Learning to Beamform

Example: Formulation

For each receiver k, signal to interference-plus-noise ratio (SINR)

SINR =
|hkk|2pk∑

j 6=k |hkj |2pj + σ2k

hij : elements of channel matrix H

pk: power allocated to k-th link (optimization variable)

σ2k: noise power at k-th receiver
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Learning to Beamform

Example: Formulation

Maximize weighted system throughput:

max
p

f(p;h) =

K∑
k=1

αk log

(
1 +

|hkk|2pk∑
j 6=k |hkj |2pj + σ2k

)
s.t. 0 ≤ pk ≤ Pmax,∀k = 1, 2, ...,K

αk: nonnegative weights

Pmax: max power allocated to each user

NP hard problem [Luo-Zhang 2008]

Lots of iterative algorithms in the literature deal with (generalized
versions of) this problem, e.g., SCALE [Papandriopoulos et al 09],
Pricing [Shi et al 08], WMMSE [Shi et al 11], BSUM [Hong et al 14];
See [Schmidt et al 13] for comparison of different algorithms
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Learning to Beamform

Introduction

Proposed Method: Learning to Optimize

minimize error by tuning θ

Algorithm

Learner
τ (·; θ)

Problem

Instance

Optimized

Solution

Error

ACCURATE

SLOW
ACCURATE

Figure: Training Stage

Learner

τ (·; θ)
Problem

Instance

Desired

Solution

FAST

ACCURATE

Figure: Testing Stage
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Learning to Beamform

Literature Review

“Unfold” specific iterative algorithm
Gregor and LeCun (2010)

Iterative soft-thresholding algorithm (ISTA)

Gregor and LeCun (2010)

Coordinate descent algorithm (CD)

Sprechmann et al. (2013)

Alternating direction method of multipliers (ADMM)

Hershey et al. (2014)

Multiplicative updates for non-negative matrix factorization (NMF)

Drawbacks

No theoretical approximation guarantees
Can we use fewer layers to approximate more iterations?
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Learning to Beamform

Can we learn the entire algorithm?
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Learning to Beamform

Proposed Method

minimize error by tuning θ

Algorithm

Learner
τ (·; θ)

Problem

Instance

Optimized

Solution

Error

ACCURATE

SLOW
ACCURATE

Figure: Training Stage

Learner

τ (·; θ)
Problem

Instance

Desired

Solution

FAST

ACCURATE

Figure: Testing Stage

Given lots of (h, x∗) pairs, learn the nonlinear “mapping” h→ x∗

Questions:
How to choose “Learner”?
What kinds of algorithms can we accurately learn?
What’s the major benefit of such an approach?
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Proposed Method: Learning to Optimize

Deep Neural Network

input layer multiple hidden layers output layer

max(·,0)

Figure: deep neural network
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Proposed Method: Learning to Optimize

Deep Neural Network

Difficult to train [Glorot and Bengio (2010)]

The vanishing gradient problem
Traditional gradient descent not work

Recent advances

New initialization methods [Hinton et al. (2012)]

New training algorithms: ADAM [Kingma and Ba (2014)], RMSprop
[Hinton et al. (2012)], ...
New hardwares: CPU clusters, GPUs, TPUs, ...

DNN is more powerful than the traditional NN [Telgarsky (2016)]

To achieve the same accuracy as shallow neural network, DNN can be
exponentially faster in testing stage [Mhaskar et al. (2016)]
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Proposed Method: Learning to Optimize

Example: Approximate iterative algorithm
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Figure: The learned model (the red line) with random initialization

Learning the mapping h→ xT ?

Issue: Cannot learn the behavior of the algorithm well

Three layers DNN; 50 K training samples
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Proposed Method: Learning to Optimize

Example: Approximate iterative algorithm

Reason: Non-convexity results in multiple local solutions

Solution: Add init as features: Learn the mapping (x0, h)→ xT

The model learned in this way
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Figure: The learned model (the red line)
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Proposed Method: Learning to Optimize

Universal approximation theorem for iterative algorithm

Theorem 1 [Sun et al 17]

Given a T iteration algorithm whose input output relationship is:

xT = gT (gT−1(. . . g1(g0(x0, h), h) . . . , h), h) , GT (x0, h) (1)

where h is problem parameter; x0 is initialization; gk(xk−1;h) is a
continuous mapping, representing the algorithm at kth iteration

Then for any ε > 0, there exist a three-layer neural network
NETN(ε)(x0, h) with N(ε) nodes in the hidden layer such that

sup
(x0,h)∈X0×H

‖NETN(ε)(x0, h)−GT (x0, h)‖ ≤ ε. (2)

where H and initialization X0 are any compact sets.

Extension of the classical result [Cybenko (1989)]
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Proposed Method: Learning to Optimize

Universal approximation theorem for iterative algorithm

Key point: It is possible to learn an iterative algorithm, represented
by the mapping (x0, h)→ xT

Assumptions on the algorithm:

For iterative algorithm:

xk+1 = gk(xk, h)

where h ∈ H is the problem parameter; xk, xk+1 ∈ X are the
optimization variables.

The function gk is a continuous mapping

X and H are compact sets
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Case Study: Resource Management for Wireless Networks

Case Study: Resource Management for Wireless Networks

Maximize weighted system throughput:

max
p

f(p;h) =

K∑
k=1

αk log

(
1 +

|hkk|2pk∑
j 6=k |hkj |2pj + σ2k

)
s.t. 0 ≤ pk ≤ Pmax,∀k = 1, 2, ...,K

αk: nonnegative weights

Pmax: max power allocated to each user
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Case Study: Resource Management for Wireless Networks

Case Study: Existing Methods

We will attempt to learn a popular method called Weighted Minimum
Mean Square Error (WMMSE) [Shi et al. (2011)]

Transform the problem into one with three sets of variables (v, u, w)

Optimize in a coordinate descent manner
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Case Study: Resource Management for Wireless Networks

Case Study: Existing Methods

input: H, {σk}, Pmax, output: {pk}
1. Initialize v0k such that 0 ≤ v0k ≤

√
Pmax, ∀ k;

2. Initialize u0k =
|hkk|v0k∑K

j=1 |hkj |(v0j )2+σ2
k

, w0
k = 1

1−u0k|hkk|v
0
k

, ∀ k;

3. repeat

4. Update vk: vtk =

[
αkw

t−1
k ut−1

k |hkk|∑K
j=1 αjw

t−1
j (ut−1

j )2|hjk|2

]√Pmax

0

, ∀ k;

5. Update uk: utk =
|hkk|vtk∑K

j=1 |hkj |2(vtj)2+σ2
k

, ∀ k;

6. Update wk: wtk = 1
1−utk|hkk|v

t
k
, ∀ k;

7. until
∣∣∣∑K

j=1 log
(
wtj

)
−
∑K

j=1 log
(
wt−1j

)∣∣∣≤ε;
8. output pk = (vk)

2, ∀ k;

Figure: Pseudo code of WMMSE for the scalar IC.
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Case Study: Resource Management for Wireless Networks

Case Study: Proposed Approach

fH(i)g

fpikg

f~pikg

minimize error by tuning θ

error

WMMSE

τ (·; θ)

Figure: Training Stage

fH(i)g

τ (·; θ)

f~pikg output

Figure: Testing Stage
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Approximation of WMMSE by deep neural networks

Theorem 2 [Sun et al 17]

Suppose WMMSE is initialized with pk = Pmax,∀k. Define

H :=

{
h | Hmin ≤ |hjk| ≤ Hmax,∀j, k

K∑
i=1

vti(h) ≥ Pmin > 0,∀t

}
.

Given ε > 0, there exists a neural network NET (h) consisting of

O

(
T 2 log

(
max

(
K,Pmax, Hmax,

1

σ
,

1

Hmin
,

1

Pmin

))
+ T log

(
1

ε

))
layers

O

(
T 2K2 log

(
max

(
K,Pmax, Hmax,

1

σ
,

1

Hmin
,

1

Pmin

))
+ TK2log

(
1

ε

))
ReLUs and Binary units,

such that max
h∈H

max
i
|(pTi (h))2 −NET (h)i| ≤ ε
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IMAC - Data Generation

For problem with N base stations and total K users

Channels are generated according to 3GPP standards

Fix other values, i.e., Pmax = 1, σk = 1

Given tuple ({H̃(i)}, Pmax, {σk}), run WMMSE get {pik}, ∀i, k

106 training samples (H(i), {pik}), ∀i ∈ T

104 testing samples H(i),∀i ∈ V
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IMAC - Training Stage

Training Deep Neural Network

We pick a three-hidden-layer DNN with 200-80-80 neurons

Implemented by Python 3.6.0 with TensorFlow 1.0.0

Training using two Nvidia K20 GPUs

Training is based on optimizing the loss function

min
θ

∑
i∈T
‖τ(H(i), θ)− {pik}‖2
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IMAC - Testing Stage

Testing Deep Neural Network

DNN appraoch: implemented by Python

WMMSE algorithm: implemented in C

Testing only using CPU

Objective function

f =

K∑
k=1

log

(
1 +

|hkk|2pk∑
j 6=k |hkj |2pj + σ2k

)

Evaluate ratio of the per-testing sample sum-rates

f(H(i), {p̃ik}, {σk})⇒ DNN

f(H(i), {pik}, {σk})⇒WMMSE
,∀i
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IMAC - Larger Problem
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Figure: IMAC: N = 20, K = 80
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IMAC - Results
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Figure: IMAC: N = 20, K = 80, radius = 100m
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IMAC - Larger Problem

Table: Relative CPU Time and Sum-Rate for IMAC

network training sum-rate computational time
structure samples r=500m r=100m r=500m r=100m

200-200-200 2 million 98.44% 88.46% 0.7% 0.4%
200-200-200 1 million 97.03% 89.59% 0.7% 0.4%
200-80-80 2 millions 95.58% 87.44% 0.6% 0.5%
200-80-80 1 million 95.39% 86.70% 0.6% 0.3%
200-80-80 0.5 million 95.39% 85.35% 0.6% 0.3%
200-80-80 0.1 million 94.71% 81.28% 0.6% 0.3%

Key observations:

Increase training samples helps

Increase number of neurons helps
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Problem Setup - VDSL channel

Transmitter

Receiver

K direction channel K ∗ (K− 1) interference channel

Figure: cast as a 28-user IC problem

Data collected by France Telecom R&D [Karipidis et al. (2005)]

Measured lengths: 75 meters, 150 meters, and 300 meters

far-end crosstalk (FEXT) vs. near-end crosstalk (NEXT)

Total of 6955 channel measurements
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VDSL - Procedure & Results

6955 real data = 5000 validation + 1955 testing

50, 000 training: computer-generated following validation statistics

Same training and testing procedure

Table: Sum-Rate and Computational Performance for Measured VDSL Data

sum-rate computational time
(length, type) DNN/WMMSE DNN/WMMSE(C)

( 75, FEXT) 99.96% 42.18%
(150, FEXT) 99.43% 50.98%
(300, FEXT) 99.58% 57.78%

( 75, NEXT) 99.85% 3.16%
(150, NEXT) 98.31% 7.14%
(300, NEXT) 94.14% 5.52%
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Recap, take home, road forward

Two very (NP-)hard problems: BMF for min outage; max sum rate
power control for multiuser interference channel

Boldly using ML (staples): SGD, DNN, ...

Some things we can prove, design currently an art, not difficult to
tune

As engineers, we have to appreciate opportunities, understand why

Updates

Lee et al, Deep Power Control: Transmit Power Control Scheme Based
on Convolutional Neural Network, IEEE Communications Letters
(2018) extend our approach, using sum rate for training in second
stage (can improve upon WMMSE);

de Kerret et al, Decentralized Deep Scheduling for Interference
Channels, arXiv:1711.00625 (2017) consider user scheduling for the IC
using multiple collaboratively trained DNNs
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Thank You!

Paper: Y. Shi, A. Konar, N. D. Sidiropoulos, et al., “Learning to
Beamform for Minimum Outage”, in review.
Paper: H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to Optimize: Training Deep Neural Networks for Wireless
Resource Management”, https://arxiv.org/abs/1705.09412
Code: https://github.com/Haoran-S/TSP-DNN
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Interference Channel (IC) - Generalization

Issues:

Same number of users for both training and testing

In practice, what if K in testing is different from training?

Half-user simulation setup:

Training Stage

Testing Stage

Algorithm DNN

H 2 R
K×K

H 2 R
K×K

H 2 R
K

2
×

K

2

Input

0

00

Transmitter

Receiver

Transmitter

Receiver
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Interference Channel (IC) - Generalization

Half-user results

Table: Relative CPU Time and Sum-Rate for Gaussian IC half-user

sum-rate computational time
# of users (K) full-user half-user full-user half-user

10 97.92% 99.22% 0.32% 0.96%
20 92.65% 92.78% 0.16% 0.48%
30 85.66% 87.77% 0.12% 0.37%
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